Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Hot Tube Test”-Analysis of Lubricant Effect on Diesel Engine Scuffing

1984-02-01
840262
To prevent engine scuffing in the field a new laboratory test called the Hot Tube Test has been established in order to evaluate the high temperature stability of diesel engine oils. In a strip mining application field test using 47 bulldozers powered by the same engine type, half of the engines suffered from piston scuffing failures when operated on a variety of commercially available API CD quality SAE 30 Grade engine oils. All the field test oils have been investigated using the Hot Tube Test, and an analysis of the results indicates that it would be possible to accurately predict scuffing failures by this test method. Furthermore, the reliability of this analysis has been verified by bench engine testing on reference oils. The reasons why the Hot Tube Test predicts the anti-scuffing performance of engine oils are discussed.
Technical Paper

“Fuel Flow Method2” for Estimating Aircraft Emissions

2006-08-30
2006-01-1987
In recent years there has been increasing interest in quantifying the emissions from aircraft in order to generate inventories of emissions for climate models, technology and scenario studies, and inventories of emissions for airline fleets typically presented in environmental reports. The preferred method for calculating aircraft engine emissions of NOx, HC, and CO is the proprietary “P3T3” method. This method relies on proprietary airplane and engine performance models along with proprietary engine emissions characterizations. In response and in order to provide a transparent method for calculating aircraft engine emissions non proprietary fuel flow based methods 1,2,3 have been developed. This paper presents derivation, updates, and clarifications of the fuel flow method methodology known as “Fuel Flow Method 2”.
Technical Paper

“Doing More with Less” - The Fuel Economy Benefits of Cooled EGR on a Direct Injected Spark Ignited Boosted Engine

2010-04-12
2010-01-0589
Due to the rising costs of fuel and increasingly stringent regulations, auto makers are in need of technology to enable more fuel-efficient powertrain technologies to be introduced to the marketplace. Such powertrains must not sacrifice performance, safety or driver comfort. Today's engine and powertrain manufacturers must, therefore, do more with less by achieving acceptable vehicle performance while reducing fuel consumption. One effective method to achieve this is the extreme downsizing of current direct injection spark ignited (DISI) engines through the use of high levels of boosting and cooled exhaust gas recirculation (EGR). Key challenges to highly downsized gasoline engines are retarded combustion to prevent engine knocking and the necessity to operate at air/fuel ratios that are significantly richer than the stoichiometric ratio.
Technical Paper

“Consumer Attitudes and Perceptions about Safety and Their Preferences and Willingness to Pay for Safety”

2010-10-19
2010-01-2336
The U.S. National Highway Transportation and Safety Agency's (NHTSA) early estimates of Motor Traffic Fatalities in 2009 in the United States [1] show continuing progress on improving traffic safety on the U.S. roadways. The number of total fatalities and the fatality rate per 100 Million Vehicle Miles (MVM), both show continuing declines. In the 10 year period from 1999 through 2009, the total fatalities have dropped from 41,611 to 33,963 and the fatality rate has dropped from 1.5 fatalities per 100MVM to 1.16 fatalities per 100MVM, a compound annual drop of 2.01% and 2.54% respectively. The large number of traffic fatalities, and the slowing down of the fatality rate decline, compared to the decade before, continues to remain a cause of concern for regulators.
Technical Paper

“Catalytic Engine” NOx Reduction of Diesel Engines with New Concept Onboard Ammonia Synthesis System

1992-02-01
920469
Ammonia is one of the most useful compounds that react with NOx selectively on a catalyst, such as V2O5-TiO2, under oxygen containing exhaust gas. However ammonia cannot be stored because of its toxicity for the small power generator in populated areas or for the diesel vehicles. A new concept for NOx reduction in diesel engine using ammonia is introduced. This system is constructed from the hydrogen generator by fuel reformer, the ammonia synthesizer, SCR catalyst for NOx reduction and the gas injection system of reformed gas into the cylinder. Experimental results show that, the SCR catalyst provides a very high rate of NOx reduction, reformed gas injection into cylinder is very effective for particulate reduction. WHEN CONSIDERING INTERNAL COMBUSTION ENGINES of the 1990's the question of how to harmonize the engine with the natural environments is one of the greatest problems. The internal combustion engine changes a substance into energy via its explosive combustion.
Technical Paper

“Buckling” Failure Assessment for Long Cylinders

1976-02-01
760641
A new method for the structural study of long hydraulic cylinders has been developed. The rational analysis, taking cognizance of most known conditions and disturbances, is capable of an iterative type solution by computer. Some examples of its use are given, illustrating the effects of stroke length and mounting position on stresses, deflections, internal bearing loads, and critical axial load.
Technical Paper

“A Study on Simulated Down-hill Brake Test Method for Motorcycles”

1987-11-08
871184
As a part of testing the braking performance of motorcycles, the method designed for evaluating the very changes caused in brake characteristics due to heat fade has been recently receiving the close attention of ISO and ECE. With the cooperation of the members of the Motorcycle Brake Subcommittee of Japan Automobile Manufacturers Association we measured temperature changes in the brakes and braking force distribution in motorcycles being driven downhill, based on which we find simple and highly reliable simulation test methods on a flat test course. As for test method, we found the STOP method of repeated starting and stopping more suitable to motorcycles than the SNUB, method of making non-stop running. For both methods we also found test conditions offering the highest correlation to actual down-hill driving.
Technical Paper

‘Motoring Which?’ — Eighteen Years of Human Factors in Comparative Car Testing — An Historical Review

1980-02-01
800332
In 1961 the Consumers’ Association in Britain set up a car test unit, and in 1962 the first car test reports were published. These later became the ‘Motoring Which?’ quarterly supplement to ‘Which?’ magazine. The methods and general sequence of the CA car testing procedure are first outlined. The Human Factors contribution to this testing programme is then described. The contribution broadly takes two forms. First, human factors reference data and guidance are provided to assist with the planning and interpretation of the objective measurement programme run by the test unit. Second, an extensive Human Factors Questionnaire (HFQ) programme is organised, and the results are reported, quarterly for every group of test cars. The initial planning of the Human Factors contribution is described; then the essential features of the HFQ programme, and its successive stages of development over the years to the current form with computerised analysis and output are reviewed.
Technical Paper

λDSF: Dynamic Skip Fire with Homogeneous Lean Burn for Improved Fuel Consumption, Emissions and Drivability

2018-04-03
2018-01-0891
Dynamic skip fire (DSF) has shown significant fuel economy improvement potential via reduction of pumping losses that generally affect throttled spark-ignition (SI) engines. In DSF operation, individual cylinders are fired on-demand near peak efficiency to satisfy driver torque demand. For vehicles with a downsized-boosted 4-cylinder engine, DSF can reduce fuel consumption by 8% in the WLTC (Class 3) drive cycle. The relatively low cost of cylinder deactivation hardware further improves the production value of DSF. Lean burn strategies in gasoline engines have also demonstrated significant fuel efficiency gains resulting from reduced pumping losses and improved thermodynamic characteristics, such as higher specific heat ratio and lower heat losses. Fuel-air mixture stratification is generally required to achieve stable combustion at low loads.
Technical Paper

ɸ-Sensitivity Evaluation of n-Butanol and Iso-Butanol Blends with Surrogate Gasoline

2023-08-28
2023-24-0089
Using renewable fuels is a reliable approach for decarbonization of combustion engines. iso-Butanol and n-butanol are known as longer chain alcohols and have the potential of being used as gasoline substitute or a renewable fraction of gasoline. The combustion behavior of renewable fuels in modern combustion engines and advanced combustion concepts is not well understood yet. Low-temperature combustion (LTC) is a concept that is a basis for some of the low emissions-high efficiency combustion technologies. Fuel ɸ-sensitivity is known as a key factor to be considered for tailoring fuels for these engines. The Lund ɸ-sensitivity method is an empirical test method for evaluation of the ɸ-sensitivity of liquid fuels and evaluate fuel behavior in thermal. iso-Butanol and n-butanol are two alcohols which like other alcohol exhibit nonlinear behavior when blended with (surrogate) gasoline in terms of RON and MON.
Technical Paper

the identification and characterization of RUMBLE AND THUD

1960-01-01
600015
SIMULTANEOUS RECORDINGS of cylinder pressure, audible sound, and crankshaft motion have shown that rumble is a noise associated with bending vibrations of the crankshaft. The vibrations are caused by abnormally high rates of pressure rise near the top dead center piston position. In this study the high rates of pressure rise were obtained by inducting deposits into the the engine. Thud is a torsional vibration of the crankshaft, similar in sound to rumble but resulting from much earlier occurrence of the maximum rates of pressure rise. Rumble vibrations consisted of a fundamental frequency of 600 cps and higher harmonics in the 11/1 compression ratio V-8 laboratory engine used in the investigation. The audible noise of rumble was predominantly composed of the second harmonic or about 1200 cps.
Technical Paper

p>Thermomechanical Analysis of the Cylinder Head and Cylinder Block with the Liner of AFV Diesel Engine

2011-10-06
2011-28-0118
This paper deals with the Coupled thermo mechanical analysis of a cylinder head, cylinder block and crank case with the liner of an uprated engine. The existing engine develops 780 hp output with mechanical driven supercharger and the engine is uprated to 1000 hp by replacing the supercharger with a turbocharger and new Fuel injection equipment. For uprating any engine, the piston and cylinder head are the most vulnerable members due to increased mechanical and thermal loadings. Mechanical loading is due to the gas pressure in the gas chamber and its magnitude can be judged in terms of peak pressure. Thermal loading is due to temperature and the heat transfer conditions in the piston surface, cylinder liner and the cylinder head. The relative importance of the various loads applied on the head and cylinder block in operation are assessed and a method of predicting their influence on the structural integrity of the components described.
Technical Paper

mDSF: Improved Fuel Efficiency, Drivability and Vibrations via Dynamic Skip Fire and Miller Cycle Synergies

2019-04-02
2019-01-0227
mDSF is a novel cylinder deactivation technology developed at Tula Technology, which combines the torque control of Dynamic Skip Fire (DSF) with Miller cycle engines to optimize fuel efficiency at minimal cost. mDSF employs a valvetrain with variable valve lift plus deactivation and novel control algorithms founded on Tula’s proven DSF technology. This allows cylinders to dynamically alternate among 3 potential states: high-charge fire, low-charge fire, and skip (deactivation). The low-charge fire state is achieved through an aggressive Miller cycle with Early Intake Valve Closing (EIVC). The three operating states in mDSF can be used to simultaneously optimize engine efficiency and driveline vibrations. Acceleration performance is retained using the all-cylinder, high-charge firing mode.
Technical Paper

eFlite Dedicated Hybrid Transmission for Chrysler Pacifica

2018-04-03
2018-01-0396
Electrified powertrains will play a growing role in meeting global fuel consumption and CO2 requirements. In support of this, FCA US has developed its first dedicated hybrid transmission (the eFlite® transmission), used in the Chrysler Pacifica Hybrid. The Chrysler Pacifica is the industry’s first electrified minivan. [2] The new eFlite hybrid transmission architecture optimizes performance, fuel economy, mass, packaging and NVH. The transmission is an electrically variable FWD transaxle with an input split configuration and incorporates two electric motors, both capable of driving in EV mode. The lubrication and cooling system makes use of two pumps, one electrically operated and one mechanically driven. The Chrysler Pacifica has a 16kWh lithium ion battery and a 3.6-liter Pentastar® engine which offers total system power of 260 hp with 84 MPGe, 33 miles of all electric range and 566 miles total driving range. [2] This paper’s focus is on the eFlite transmission.
Technical Paper

e-Sys Electric Axle: Electrification Solution for Commercial Vehicles

2023-07-25
2023-36-0350
With the increase in demand for energy sustainability projects over the last few years, the Brazilian commercial vehicle industry was guided to develop projects based on ESG policies. Aligned with this need, an initiative that ended up becoming a reality was the “e-Sys” electrification solution, by the company Suspensys. This solution includes a power source (battery), an e-powertrain (motors, inverters and drive axle) and an intelligent control system (VCU with embedded code and sensors). The main motivational drive was the hybridization of semi-trailers, in order to generate a reduction in fuel consumption in cargo transport in Brazil, in addition to the consequent reduction in the emission of particles into the environment and promoting the safety of the operation. It was also adopted, as a premise of the project, that the electrification system was totally independent of the truck’s electronic system (stand alone system), in order to facilitate the operation of the fleet owner.
Technical Paper

e-Fuel Production via Renewables and the Impact on the In-Use CO2 Performance

2020-09-15
2020-01-2139
The trend towards renewable energy sources will continue under the pre-amble of greenhouse gas (GHG) emission reduction targets. The main question is how to harvest and store renewable energy properly. The challenge of intermittency of the renewable energy resources make the supply less predictable compared to the traditional energy sources. Chemical energy carriers like hydrogen and synthetic fuels (e-Fuels) seem to be at least a part of the solution for storing renewable energy. The usage of e-Fuels in the existing ICE-powered vehicle fleet has a big lever arm to reduce the GHG emissions of the transport sector in the short- and medium term. The paper covers the whole well-to-wheel (WtW) pathway by discussing the e-Fuel production from renewable sources, the storage and the usage in the vehicle. It will be summarized by scenarios on the impact of e-Fuel to the WtW CO2 fleet emissions.
X